69 research outputs found

    Phase diagram and dynamic response functions of the Holstein-Hubbard model

    Full text link
    We present the phase diagram and dynamical correlation functions for the Holstein-Hubbard model at half filling and at zero temperature. The calculations are based on the Dynamical Mean Field Theory. The effective impurity model is solved using Exact Diagonalization and the Numerical Renormalization Group. Excluding long-range order, we find three different paramagnetic phases, metallic, bipolaronic and Mott insulating, depending on the Hubbard interaction U and the electron-phonon coupling g. We present the behaviour of the one-electron spectral functions and phonon spectra close to the metal insulator transitions.Comment: contribution to the SCES04 conferenc

    Numerical Renormalization Group Study of the O(3)-symmetric Anderson Model

    Full text link
    We use the numerical renormalization group method to study the O(3)-symmetric version of the impurity Anderson model of Coleman and Schofield. This model is of general interest because it displays both Fermi liquid and non-Fermi liquid behaviour, and in the large UU limit can be related to the compactified two channel Kondo model of Coleman, Ioffe and Tsvelik. We calculate the thermodynamics for a parameter range which covers the full range of behaviour of the model. We find a non-Fermi liquid fixed point in the isotropic case which is unstable with respect to channel anisotropy.Comment: 10 pages, LaTeX, 8 figures includes as eps-file

    Renormalization group approach to Fermi Liquid Theory

    Full text link
    We show that the renormalization group (RG) approach to interacting fermions at one-loop order recovers Fermi liquid theory results when the forward scattering zero sound (ZS) and exchange (ZS′') channels are both taken into account. The Landau parameters are related to the fixed point value of the ``unphysical'' limit of the forward scattering vertex. We specify the conditions under which the results obtained at one-loop order hold at all order in a loop expansion. We also emphasize the similarities between our RG approach and the diagrammatic derivation of Fermi liquid theory.Comment: 4 pages (RevTex) + 1 postcript file, everything in a uuencoded file, uses epsf (problem with the figure in the first version

    Theory of Transition Temperature of Magnetic Double Perovskites

    Full text link
    We formulate a theory of double perovskite coumpounds such as Sr2_2FeReO6_6 and Sr2_2FeMoO6_6 which have attracted recent attention for their possible uses as spin valves and sources of spin polarized electrons. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c. We find that TcT_c is determined by a subtle interplay between carrier density and the Fe-Mo/Re site energy difference, and that the non-Fe same-sublattice hopping acts to reduce TcT_c. Our results suggest that presently existing materials do not optimize TcT_c

    A planar diagram approach to the correlation problem

    Full text link
    We transpose an idea of 't Hooft from its context of Yang and Mills' theory of strongly interacting quarks to that of strongly correlated electrons in transition metal oxides and show that a Hubbard model of N interacting electron species reduces, to leading orders in N, to a sum of almost planar diagrams. The resulting generating functional and integral equations are very similar to those of the FLEX approximation of Bickers and Scalapino. This adds the Hubbard model at large N to the list of solvable models of strongly correlated electrons. PACS Numbers: 71.27.+a 71.10.-w 71.10.FdComment: revtex, 5 pages, with 3 eps figure

    Microscopic theory for quantum mirages in quantum corrals

    Get PDF
    Scanning tunneling microscopy permits to image the Kondo resonance of a single magnetic atom adsorbed on a metallic surface. When the magnetic impurity is placed at the focus of an elliptical quantum corral, a Kondo resonance has been recently observed both on top of the impurity and on top of the focus where no magnetic impurity is present. This projection of the Kondo resonance to a remote point on the surface is referred to as quantum mirage. We present a quantum mechanical theory for the quantum mirage inside an ideal quantum corral and predict that the mirage will occur in corrals with shapes other than elliptical

    Electronic correlations in organometallic complexes

    Full text link
    We investigate an effective model for organometallic complexes (with potential uses in optoelectronic devices) via both exact diagonalisation and the configuration interaction singles (CIS) approximation. This model captures a number of important features of organometallic complexes, notably the sensitivity of the radiative decay rate to small chemical changes. We find that for large parameter ranges the CIS approximation accurately reproduces the low energy excitations and hence the photophysical properties of the exact solution. This suggests that electronic correlations do \emph{not} play an important role in these complexes. This explains why time-dependent density functional theory works surprisingly well in these complexes.Comment: 11 pages, 6 figure

    The Two Dimensional Kondo Model with Rashba Spin-Orbit Coupling

    Full text link
    We investigate the effect that Rashba spin-orbit coupling has on the low energy behaviour of a two dimensional magnetic impurity system. It is shown that the Kondo effect, the screening of the magnetic impurity at temperatures T < T_K, is robust against such spin-orbit coupling, despite the fact that the spin of the conduction electrons is no longer a conserved quantity. A proposal is made for how the spin-orbit coupling may change the value of the Kondo temperature T_K in such systems and the prospects of measuring this change are discussed. We conclude that many of the assumptions made in our analysis invalidate our results as applied to recent experiments in semi-conductor quantum dots but may apply to measurements made with magnetic atoms placed on metallic surfaces.Comment: 22 pages, 1 figure; reference update

    Kondo effect in a Luttinger liquid: nonuniversality of the Wilson ratio

    Full text link
    Using a precise coset Ising-Bose representation, we show how backscattering of electrons off a magnetic impurity destabilizes the two-channel Kondo fixed point and drives the system to a new fixed point, in agreement with previous results. In addition, we verify the scaling proposed by Furusaki and Nagaosa and prove that the other possible critical fixed point, namely the local Fermi liquid class, is not completely universal when backscattering is included because the Wilson ratio is not well-defined in the spinon basis.Comment: 4 pages, RevTeX; to appear in Physical Review

    Kondo effect in multielectron quantum dots at high magnetic fields

    Full text link
    We present a general description of low temperature transport through a quantum dot with any number of electrons at filling factor 1<ν<21<\nu <2. We provide a general description of a novel Kondo effect which is turned on by application of an appropriate magnetic field. The spin-flip scattering of carriers by the quantum dot only involves two states of the scatterer which may have a large spin. This process is described by spin-flip Hubbard operators, which change the angular momentum, leading to a Kondo Hamiltonian. We obtain antiferromagnetic exchange couplings depending on tunneling amplitudes and correlation effects. Since Kondo temperature has an exponential dependence on exchange couplings, quantitative variations of the parameters in different regimes have important experimental consequences. In particular, we discuss the {\it chess board} aspect of the experimental conductance when represented in a grey scale as a function of both the magnetic field and the gate potential affecting the quantum dot
    • …
    corecore